The Stacks project

53.24 Contracting to a stable curve

In this section we combine the contraction morphisms found in Sections 53.22 and 53.23. Namely, suppose that $k$ is a field and let $X$ be a proper scheme over $k$ of dimension $1$ with $H^0(X, \mathcal{O}_ X) = k$ having genus $g \geq 2$. Assume the singularities of $X$ are at-worst-nodal. Composing the morphism of Lemma 53.22.6 with the morphism of Lemma 53.23.6 we get a morphism

\[ c : X \longrightarrow Y \]

such that $Y$ also is a proper scheme over $k$ of dimension $1$ whose singularities are at worst nodal, with $k = H^0(Y, \mathcal{O}_ Y)$ and having genus $g$, such that $\mathcal{O}_ Y = c_*\mathcal{O}_ X$ and $R^1c_*\mathcal{O}_ X = 0$, and such that $\omega _ Y$ is ample on $Y$. Lemma 53.24.2 shows these conditions in fact characterize this morphism.

Lemma 53.24.1. Let $k$ be a field. Let $c : X \to Y$ be a morphism of proper schemes over $k$ Assume

  1. $\mathcal{O}_ Y = c_*\mathcal{O}_ X$ and $R^1c_*\mathcal{O}_ X = 0$,

  2. $X$ and $Y$ are reduced, Gorenstein, and have dimension $1$,

  3. $\exists \ m \in \mathbf{Z}$ with $H^1(X, \omega _ X^{\otimes m}) = 0$ and $\omega _ X^{\otimes m}$ generated by global sections.

Then $c^*\omega _ Y \cong \omega _ X$.

Proof. The fibres of $c$ are geometrically connected by More on Morphisms, Theorem 37.53.4. In particular $c$ is surjective. There are finitely many closed points $y = y_1, \ldots , y_ r$ of $Y$ where $X_ y$ has dimension $1$ and over $Y \setminus \{ y_1, \ldots , y_ r\} $ the morphism $c$ is an isomorphism. Some details omitted; hint: outside of $\{ y_1, \ldots , y_ r\} $ the morphism $c$ is finite, see Cohomology of Schemes, Lemma 30.21.1.

Let us carefully construct a map $b : c^*\omega _ Y \to \omega _ X$. Denote $f : X \to \mathop{\mathrm{Spec}}(k)$ and $g : Y \to \mathop{\mathrm{Spec}}(k)$ the structure morphisms. We have $f^!k = \omega _ X[1]$ and $g^!k = \omega _ Y[1]$, see Lemma 53.4.1 and its proof. Then $f^! = c^! \circ g^!$ and hence $c^!\omega _ Y = \omega _ X$. Thus there is a functorial isomorphism

\[ \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(\mathcal{F}, \omega _ X) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ Y)}(Rc_*\mathcal{F}, \omega _ Y) \]

for coherent $\mathcal{O}_ X$-modules $\mathcal{F}$ by definition of $c^!$1. This isomorphism is induced by a trace map $t : Rc_*\omega _ X \to \omega _ Y$ (the counit of the adjunction). By the projection formula (Cohomology, Lemma 20.52.2) the canonical map $a : \omega _ Y \to Rc_*c^*\omega _ Y$ is an isomorphism. Combining the above we see there is a canonical map $b : c^*\omega _ Y \to \omega _ X$ such that

\[ t \circ Rc_*(b) = a^{-1} \]

In particular, if we restrict $b$ to $c^{-1}(Y \setminus \{ y_1, \ldots , y_ r\} )$ then it is an isomorphism (because it is a map between invertible modules whose composition with another gives the isomorphism $a^{-1}$).

Choose $m \in \mathbf{Z}$ as in (3) consider the map

\[ b^{\otimes m} : \Gamma (Y, \omega _ Y^{\otimes m}) \longrightarrow \Gamma (X, \omega _ X^{\otimes m}) \]

This map is injective because $Y$ is reduced and by the last property of $b$ mentioned in its construction. By Riemann-Roch (Lemma 53.5.2) we have $\chi (X, \omega _ X^{\otimes m}) =\chi (Y, \omega _ Y^{\otimes m})$. Thus

\[ \dim _ k \Gamma (Y, \omega _ Y^{\otimes m}) \geq \dim _ k \Gamma (X, \omega _ X^{\otimes m}) = \chi (X, \omega _ X^{\otimes m}) \]

and we conclude $b^{\otimes m}$ induces an isomorphism on global sections. So $b^{\otimes m} : c^*\omega _ Y^{\otimes m} \to \omega _ X^{\otimes m}$ is surjective as generators of $\omega _ X^{\otimes m}$ are in the image. Hence $b^{\otimes m}$ is an isomorphism. Thus $b$ is an isomorphism. $\square$

Lemma 53.24.2. Let $k$ be a field. Let $X$ be a proper scheme over $k$ of dimension $1$ with $H^0(X, \mathcal{O}_ X) = k$ having genus $g \geq 2$. Assume the singularities of $X$ are at-worst-nodal. There is a unique morphism (up to unique isomorphism)

\[ c : X \longrightarrow Y \]

of schemes over $k$ having the following properties:

  1. $Y$ is proper over $k$, $\dim (Y) = 1$, the singularities of $Y$ are at-worst-nodal,

  2. $\mathcal{O}_ Y = c_*\mathcal{O}_ X$ and $R^1c_*\mathcal{O}_ X = 0$, and

  3. $\omega _ Y$ is ample on $Y$.

Proof. Existence: A morphism with all the properties listed exists by combining Lemmas 53.22.6 and 53.23.6 as discussed in the introduction to this section. Moreover, we see that it can be written as a composition

\[ X \to X_1 \to X_2 \ldots \to X_ n \to X_{n + 1} \to \ldots \to X_{n + n'} \]

where the first $n$ morphisms are contractions of rational tails and the last $n'$ morphisms are contractions of rational bridges. Note that property (2) holds for each contraction of a rational tail (Example 53.22.1) and contraction of a rational bridge (Example 53.23.1). It is easy to see that this property is inherited by compositions of morphisms.

Uniqueness: Let $c : X \to Y$ be a morphism satisfying conditions (1), (2), and (3). We will show that there is a unique isomorphism $X_{n + n'} \to Y$ compatible with the morphisms $X \to X_{n + n'}$ and $c$.

Before we start the proof we make some observations about $c$. We first observe that the fibres of $c$ are geometrically connected by More on Morphisms, Theorem 37.53.4. In particular $c$ is surjective. For a closed point $y \in Y$ the fibre $X_ y$ satisfies

\[ H^1(X_ y, \mathcal{O}_{X_ y}) = 0 \quad \text{and}\quad H^0(X_ y, \mathcal{O}_{X_ y}) = \kappa (y) \]

The first equality by More on Morphisms, Lemma 37.70.1 and the second by More on Morphisms, Lemma 37.70.4. Thus either $X_ y = x$ where $x$ is the unique point of $X$ mapping to $y$ and has the same residue field as $y$, or $X_ y$ is a $1$-dimensional proper scheme over $\kappa (y)$. Observe that in the second case $X_ y$ is Cohen-Macaulay (Lemma 53.6.1). However, since $X$ is reduced, we see that $X_ y$ must be reduced at all of its generic points (details omitted), and hence $X_ y$ is reduced by Properties, Lemma 28.12.4. It follows that the singularities of $X_ y$ are at-worst-nodal (Lemma 53.19.17). Note that the genus of $X_ y$ is zero (see above). Finally, there are only a finite number of points $y$ where the fibre $X_ y$ has dimension $1$, say $\{ y_1, \ldots , y_ r\} $, and $c^{-1}(Y \setminus \{ y_1, \ldots , y_ r\} )$ maps isomorphically to $Y \setminus \{ y_1, \ldots , y_ r\} $ by $c$. Some details omitted; hint: outside of $\{ y_1, \ldots , y_ r\} $ the morphism $c$ is finite, see Cohomology of Schemes, Lemma 30.21.1.

Let $C \subset X$ be a rational tail. We claim that $c$ maps $C$ to a point. Assume that this is not the case to get a contradiction. Then the image of $C$ is an irreducible component $D \subset Y$. Recall that $H^0(C, \mathcal{O}_ C) = k'$ is a finite separable extension of $k$ and that $C$ has a $k'$-rational point $x$ which is also the unique intersection of $C$ with the “rest” of $X$. We conclude from the general discussion above that $C \setminus \{ x\} \subset c^{-1}(Y \setminus \{ y_1, \ldots , y_ r\} )$ maps isomorphically to an open $V$ of $D$. Let $y = c(x) \in D$. Observe that $y$ is the only point of $D$ meeting the “rest” of $Y$. If $y \not\in \{ y_1, \ldots , y_ r\} $, then $C \cong D$ and it is clear that $D$ is a rational tail of $Y$ which is a contradiction with the ampleness of $\omega _ Y$ (Lemma 53.22.2). Thus $y \in \{ y_1, \ldots , y_ r\} $ and $\dim (X_ y) = 1$. Then $x \in X_ y \cap C$ and $x$ is a smooth point of $X_ y$ and $C$ (Lemma 53.19.17). If $y \in D$ is a singular point of $D$, then $y$ is a node and then $Y = D$ (because there cannot be another component of $Y$ passing through $y$ by Lemma 53.19.17). Then $X = X_ y \cup C$ which means $g = 0$ because it is equal to the genus of $X_ y$ by the discussion in Example 53.22.1; a contradiction. If $y \in D$ is a smooth point of $D$, then $C \to D$ is an isomorphism (because the nonsingular projective model is unique and $C$ and $D$ are birational, see Section 53.2). Then $D$ is a rational tail of $Y$ which is a contradiction with ampleness of $\omega _ Y$.

Assume $n \geq 1$. If $C \subset X$ is the rational tail contracted by $X \to X_1$, then we see that $C$ is mapped to a point of $Y$ by the previous paragraph. Hence $c : X \to Y$ factors through $X \to X_1$ (because $X$ is the pushout of $C$ and $X_1$, see discussion in Example 53.22.1). After replacing $X$ by $X_1$ we have decreased $n$. By induction we may assume $n = 0$, i.e., $X$ does not have a rational tail.

Assume $n = 0$, i.e., $X$ does not have any rational tails. Then $\omega _ X^{\otimes 2}$ and $\omega _ X^{\otimes 3}$ are globally generated by Lemma 53.22.5. It follows that $H^1(X, \omega _ X^{\otimes 3}) = 0$ by Lemma 53.6.4. By Lemma 53.24.1 applied with $m = 3$ we find that $c^*\omega _ Y \cong \omega _ X$. We also have that $\omega _ X = (X \to X_{n'})^*\omega _{X_{n'}}$ by Lemma 53.23.4 and induction. Applying the projection formula for both $c$ and $X \to X_{n'}$ we conclude that

\[ \Gamma (X_{n'}, \omega _{X_{n'}}^{\otimes m}) = \Gamma (X, \omega _ X^{\otimes m}) = \Gamma (Y, \omega _ Y^{\otimes m}) \]

for all $m$. Since $X_{n'}$ and $Y$ are the Proj of the direct sum of these by Morphisms, Lemma 29.43.17 we conclude that there is a canonical isomorphism $X_{n'} = Y$ as desired. We omit the verification that this is the unique isomorphism making the diagram commute. $\square$

Lemma 53.24.3. Let $k$ be a field. Let $X$ be a proper scheme over $k$ of dimension $1$ with $H^0(X, \mathcal{O}_ X) = k$ having genus $g \geq 2$. Assume the singularities of $X$ are at-worst-nodal and $\omega _ X$ is ample. Then $\omega _ X^{\otimes 3}$ is very ample and $H^1(X, \omega _ X^{\otimes 3}) = 0$.

Proof. Combining Varieties, Lemma 33.44.15 and Lemmas 53.22.2 and 53.23.2 we see that $X$ contains no rational tails or bridges. Then we see that $\omega _ X^{\otimes 3}$ is globally generated by Lemma 53.22.6. Choose a $k$-basis $s_0, \ldots , s_ n$ of $H^0(X, \omega _ X^{\otimes 3})$. We get a morphism

\[ \varphi _{\omega _ X^{\otimes 3}, (s_0, \ldots , s_ n)} : X \longrightarrow \mathbf{P}^ n_ k \]

See Constructions, Section 27.13. The lemma asserts that this morphism is a closed immersion. To check this we may replace $k$ by its algebraic closure, see Descent, Lemma 35.23.19. Thus we may assume $k$ is algebraically closed.

Assume $k$ is algebraically closed. We will use Varieties, Lemma 33.23.2 to prove the lemma. Let $Z \subset X$ be a closed subscheme of degree $2$ over $Z$ with ideal sheaf $\mathcal{I} \subset \mathcal{O}_ X$. We have to show that

\[ H^0(X, \mathcal{L}) \to H^0(Z, \mathcal{L}|_ Z) \]

is surjective. Thus it suffices to show that $H^1(X, \mathcal{I}\mathcal{L}) = 0$. To do this we will use Lemma 53.21.5. Thus it suffices to show that

\[ 3\deg (\omega _ X|_ Y) > -2\chi (Y, \mathcal{O}_ Y) + \deg (Z \cap Y) \]

for every reduced connected closed subscheme $Y \subset X$. Since $k$ is algebraically closed and $Y$ connected and reduced we have $H^0(Y, \mathcal{O}_ Y) = k$ (Varieties, Lemma 33.9.3). Hence $\chi (Y, \mathcal{O}_ Y) = 1 - \dim H^1(Y, \mathcal{O}_ Y)$. Thus we have to show

\[ 3\deg (\omega _ X|_ Y) > -2 + 2\dim H^1(Y, \mathcal{O}_ Y) + \deg (Z \cap Y) \]

which is true by Lemma 53.22.4 except possibly if $Y = X$ or if $\deg (\omega _ X|_ Y) = 0$. Since $\omega _ X$ is ample the second possibility does not occur (see first lemma cited in this proof). Finally, if $Y = X$ we can use Riemann-Roch (Lemma 53.5.2) and the fact that $g \geq 2$ to see that the inquality holds. The same argument with $Z = \emptyset $ shows that $H^1(X, \omega _ X^{\otimes 3}) = 0$. $\square$

[1] As the restriction of the right adjoint of Duality for Schemes, Lemma 48.3.1 to $D^+_\mathit{QCoh}(\mathcal{O}_ Y)$.

Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0E7N. Beware of the difference between the letter 'O' and the digit '0'.