The Stacks project

104.3 The lisse-étale and the flat-fppf sites

The section is the analogue of Cohomology of Stacks, Section 103.14 for derived categories.

Lemma 104.3.1. Let $\mathcal{X}$ be an algebraic stack. Notation as in Cohomology of Stacks, Lemmas 103.14.2 and 103.14.4.

  1. The functor $g_! : \textit{Ab}(\mathcal{X}_{lisse,{\acute{e}tale}}) \to \textit{Ab}(\mathcal{X}_{\acute{e}tale})$ has a left derived functor

    \[ Lg_! : D(\mathcal{X}_{lisse,{\acute{e}tale}}) \longrightarrow D(\mathcal{X}_{\acute{e}tale}) \]

    which is left adjoint to $g^{-1}$ and such that $g^{-1}Lg_! = \text{id}$.

  2. The functor $g_! : \textit{Mod}(\mathcal{X}_{lisse,{\acute{e}tale}}, \mathcal{O}_{\mathcal{X}_{lisse,{\acute{e}tale}}}) \to \textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_{\mathcal{X}})$ has a left derived functor

    \[ Lg_! : D(\mathcal{O}_{\mathcal{X}_{lisse,{\acute{e}tale}}}) \longrightarrow D(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X}) \]

    which is left adjoint to $g^*$ and such that $g^*Lg_! = \text{id}$.

  3. The functor $g_! : \textit{Ab}(\mathcal{X}_{flat,fppf}) \to \textit{Ab}(\mathcal{X}_{fppf})$ has a left derived functor

    \[ Lg_! : D(\mathcal{X}_{flat, fppf}) \longrightarrow D(\mathcal{X}_{fppf}) \]

    which is left adjoint to $g^{-1}$ and such that $g^{-1}Lg_! = \text{id}$.

  4. The functor $g_! : \textit{Mod}(\mathcal{X}_{flat,fppf}, \mathcal{O}_{\mathcal{X}_{flat,fppf}}) \to \textit{Mod}(\mathcal{X}_{fppf}, \mathcal{O}_{\mathcal{X}})$ has a left derived functor

    \[ Lg_! : D(\mathcal{O}_{\mathcal{X}_{flat, fppf}}) \longrightarrow D(\mathcal{O}_\mathcal {X}) \]

    which is left adjoint to $g^*$ and such that $g^*Lg_! = \text{id}$.

Warning: It is not clear (a priori) that $Lg_!$ on modules agrees with $Lg_!$ on abelian sheaves, see Cohomology on Sites, Remark 21.37.3.

Proof. The existence of the functor $Lg_!$ and adjointness to $g^*$ is Cohomology on Sites, Lemma 21.37.2. (For the case of abelian sheaves use the constant sheaf $\mathbf{Z}$ as the structure sheaves.) Moreover, it is computed on a complex $\mathcal{H}^\bullet $ by taking a suitable left resolution $\mathcal{K}^\bullet \to \mathcal{H}^\bullet $ and applying the functor $g_!$ to $\mathcal{K}^\bullet $. Since $g^{-1}g_!\mathcal{K}^\bullet = \mathcal{K}^\bullet $ by Cohomology of Stacks, Lemmas 103.14.4 and 103.14.2 we see that the final assertion holds in each case. $\square$

Lemma 104.3.2. With assumptions and notation as in Cohomology of Stacks, Lemma 103.15.1. We have

\[ g^{-1} \circ Rf_* = Rf'_* \circ (g')^{-1} \quad \text{and}\quad L(g')_! \circ (f')^{-1} = f^{-1} \circ Lg_! \]

on unbounded derived categories (both for the case of modules and for the case of abelian sheaves).

Proof. Let $\tau = {\acute{e}tale}$ (resp. $\tau = fppf$). Let $\mathcal{F}$ be an abelian sheaf on $\mathcal{X}_\tau $. By Cohomology of Stacks, Lemma 103.15.3 the canonical (base change) map

\[ g^{-1}Rf_*\mathcal{F} \longrightarrow Rf'_*(g')^{-1}\mathcal{F} \]

is an isomorphism. The rest of the proof is formal. Since cohomology of abelian groups and sheaves of modules agree we also conclude that $g^{-1} Rf_*\mathcal{F} = Rf'_* (g')^{-1}\mathcal{F}$ when $\mathcal{F}$ is a sheaf of modules on $\mathcal{X}_\tau $.

Next we show that for $\mathcal{G}$ (either sheaf of modules or abelian groups) on $\mathcal{Y}_{lisse,{\acute{e}tale}}$ (resp. $\mathcal{Y}_{flat,fppf}$) the canonical map

\[ L(g')_!(f')^{-1}\mathcal{G} \to f^{-1}Lg_!\mathcal{G} \]

is an isomorphism. To see this it is enough to prove for any injective sheaf $\mathcal{I}$ on $\mathcal{X}_\tau $ the induced map

\[ \mathop{\mathrm{Hom}}\nolimits (L(g')_!(f')^{-1}\mathcal{G}, \mathcal{I}[n]) \leftarrow \mathop{\mathrm{Hom}}\nolimits (f^{-1}Lg_!\mathcal{G}, \mathcal{I}[n]) \]

is an isomorphism for all $n \in \mathbf{Z}$. (Hom's taken in suitable derived categories.) By the adjointness of $f^{-1}$ and $Rf_*$, the adjointness of $Lg_!$ and $g^{-1}$, and their “primed” versions this follows from the isomorphism $g^{-1} Rf_*\mathcal{I} \to Rf'_* (g')^{-1}\mathcal{I}$ proved above.

In the case of a bounded complex $\mathcal{G}^\bullet $ (of modules or abelian groups) on $\mathcal{Y}_{lisse,{\acute{e}tale}}$ (resp. $\mathcal{Y}_{fppf}$) the canonical map

104.3.2.1
\begin{equation} \label{stacks-perfect-equation-to-show} L(g')_!(f')^{-1}\mathcal{G}^\bullet \to f^{-1}Lg_!\mathcal{G}^\bullet \end{equation}

is an isomorphism as follows from the case of a sheaf by the usual arguments involving truncations and the fact that the functors $L(g')_!(f')^{-1}$ and $f^{-1}Lg_!$ are exact functors of triangulated categories.

Suppose that $\mathcal{G}^\bullet $ is a bounded above complex (of modules or abelian groups) on $\mathcal{Y}_{lisse,{\acute{e}tale}}$ (resp. $\mathcal{Y}_{fppf}$). The canonical map (104.3.2.1) is an isomorphism because we can use the stupid truncations $\sigma _{\geq -n}$ (see Homology, Section 12.15) to write $\mathcal{G}^\bullet $ as a colimit $\mathcal{G}^\bullet = \mathop{\mathrm{colim}}\nolimits \mathcal{G}_ n^\bullet $ of bounded complexes. This gives a distinguished triangle

\[ \bigoplus \nolimits _{n \geq 1} \mathcal{G}_ n^\bullet \to \bigoplus \nolimits _{n \geq 1} \mathcal{G}_ n^\bullet \to \mathcal{G}^\bullet \to \ldots \]

and each of the functors $L(g')_!$, $(f')^{-1}$, $f^{-1}$, $Lg_!$ commutes with direct sums (of complexes).

If $\mathcal{G}^\bullet $ is an arbitrary complex (of modules or abelian groups) on $\mathcal{Y}_{lisse,{\acute{e}tale}}$ (resp. $\mathcal{Y}_{fppf}$) then we use the canonical truncations $\tau _{\leq n}$ (see Homology, Section 12.15) to write $\mathcal{G}^\bullet $ as a colimit of bounded above complexes and we repeat the argument of the paragraph above.

Finally, by the adjointness of $f^{-1}$ and $Rf_*$, the adjointness of $Lg_!$ and $g^{-1}$, and their “primed” versions we conclude that the first identity of the lemma follows from the second in full generality. $\square$

Lemma 104.3.3. Let $\mathcal{X}$ be an algebraic stack. Notation as in Cohomology of Stacks, Lemma 103.14.2.

  1. Let $\mathcal{H}$ be a quasi-coherent $\mathcal{O}_{\mathcal{X}_{lisse,{\acute{e}tale}}}$-module on the lisse-étale site of $\mathcal{X}$. For all $p \in \mathbf{Z}$ the sheaf $H^ p(Lg_!\mathcal{H})$ is a locally quasi-coherent module with the flat base change property on $\mathcal{X}$.

  2. Let $\mathcal{H}$ be a quasi-coherent $\mathcal{O}_{\mathcal{X}_{flat,fppf}}$-module on the flat-fppf site of $\mathcal{X}$. For all $p \in \mathbf{Z}$ the sheaf $H^ p(Lg_!\mathcal{H})$ is a locally quasi-coherent module with the flat base change property on $\mathcal{X}$.

Proof. Pick a scheme $U$ and a surjective smooth morphism $x : U \to \mathcal{X}$. By Modules on Sites, Definition 18.23.1 there exists an étale (resp. fppf) covering $\{ U_ i \to U\} _{i \in I}$ such that each pullback $f_ i^{-1}\mathcal{H}$ has a global presentation (see Modules on Sites, Definition 18.17.1). Here $f_ i : U_ i \to \mathcal{X}$ is the composition $U_ i \to U \to \mathcal{X}$ which is a morphism of algebraic stacks. (Recall that the pullback “is” the restriction to $\mathcal{X}/f_ i$, see Sheaves on Stacks, Definition 96.9.2 and the discussion following.) After refining the covering we may assume each $U_ i$ is an affine scheme. Since each $f_ i$ is smooth (resp. flat) by Lemma 104.3.2 we see that $f_ i^{-1}Lg_!\mathcal{H} = Lg_{i, !}(f'_ i)^{-1}\mathcal{H}$. Using Cohomology of Stacks, Lemma 103.8.2 we reduce the statement of the lemma to the case where $\mathcal{H}$ has a global presentation and where $\mathcal{X} = (\mathit{Sch}/X)_{fppf}$ for some affine scheme $X = \mathop{\mathrm{Spec}}(A)$.

Say our presentation looks like

\[ \bigoplus \nolimits _{j \in J} \mathcal{O} \longrightarrow \bigoplus \nolimits _{i \in I} \mathcal{O} \longrightarrow \mathcal{H} \longrightarrow 0 \]

where $\mathcal{O} = \mathcal{O}_{\mathcal{X}_{lisse,{\acute{e}tale}}}$ (resp. $\mathcal{O} = \mathcal{O}_{\mathcal{X}_{flat,fppf}}$). Note that the site $\mathcal{X}_{lisse,{\acute{e}tale}}$ (resp. $\mathcal{X}_{flat,fppf}$) has a final object, namely $X/X$ which is quasi-compact (see Cohomology on Sites, Section 21.16). Hence we have

\[ \Gamma (\bigoplus \nolimits _{i \in I} \mathcal{O}) = \bigoplus \nolimits _{i \in I} A \]

by Sites, Lemma 7.17.7. Hence the map in the presentation corresponds to a similar presentation

\[ \bigoplus \nolimits _{j \in J} A \longrightarrow \bigoplus \nolimits _{i \in I} A \longrightarrow M \longrightarrow 0 \]

of an $A$-module $M$. Moreover, $\mathcal{H}$ is equal to the restriction to the lisse-étale (resp. flat-fppf) site of the quasi-coherent sheaf $M^ a$ associated to $M$. Choose a resolution

\[ \ldots \to F_2 \to F_1 \to F_0 \to M \to 0 \]

by free $A$-modules. The complex

\[ \ldots \mathcal{O} \otimes _ A F_2 \to \mathcal{O} \otimes _ A F_1 \to \mathcal{O} \otimes _ A F_0 \to \mathcal{H} \to 0 \]

is a resolution of $\mathcal{H}$ by free $\mathcal{O}$-modules because for each object $U/X$ of $\mathcal{X}_{lisse,{\acute{e}tale}}$ (resp. $\mathcal{X}_{flat,fppf}$) the structure morphism $U \to X$ is flat. Hence by construction the value of $Lg_!\mathcal{H}$ is

\[ \ldots \to \mathcal{O}_\mathcal {X} \otimes _ A F_2 \to \mathcal{O}_\mathcal {X} \otimes _ A F_1 \to \mathcal{O}_\mathcal {X} \otimes _ A F_0 \to 0 \to \ldots \]

Since this is a complex of quasi-coherent modules on $\mathcal{X}_{\acute{e}tale}$ (resp. $\mathcal{X}_{fppf}$) it follows from Cohomology of Stacks, Proposition 103.8.1 that $H^ p(Lg_!\mathcal{H})$ is quasi-coherent. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08MZ. Beware of the difference between the letter 'O' and the digit '0'.