Processing math: 100%

The Stacks project

Lemma 21.40.2. Assumptions and notation as in Situation 21.38.1. For \mathcal{F} in \textit{Ab}(\mathcal{C}) and n \geq 0 the sheaf L_ n\pi _!(\mathcal{F}) is equal to the sheaf L_ n(\mathcal{F}) constructed in Lemma 21.40.1.

Proof. Consider the sequence of functors \mathcal{F} \mapsto L_ n(\mathcal{F}) from \textit{PAb}(\mathcal{C}) \to \textit{Ab}(\mathcal{C}). Since for each V \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D}) the sequence of functors H_ n(\mathcal{C}_ V, - ) forms a \delta -functor so do the functors \mathcal{F} \mapsto L_ n(\mathcal{F}). Our goal is to show these form a universal \delta -functor. In order to do this we construct some abelian presheaves on which these functors vanish.

For U' \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) consider the abelian presheaf \mathcal{F}_{U'} = j_{U'!}^{\textit{PAb}}\mathbf{Z}_{U'} (Modules on Sites, Remark 18.19.7). Recall that

\mathcal{F}_{U'}(U) = \bigoplus \nolimits _{\mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(U, U')} \mathbf{Z}

If U lies over V = p(U) in \mathcal{D}) and U' lies over V' = p(U') then any morphism a : U \to U' factors uniquely as U \to h^*U' \to U' where h = p(a) : V \to V' (see Categories, Definition 4.33.6). Hence we see that

\mathcal{F}_{U'}|_{\mathcal{C}_ V} = \bigoplus \nolimits _{h \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {D}(V, V')} j_{h^*U'!}\mathbf{Z}_{h^*U'}

where j_{h^*U'} : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}_ V/h^*U') \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}_ V) is the localization morphism. The sheaves j_{h^*U'!}\mathbf{Z}_{h^*U'} have vanishing higher homology groups (see Example 21.39.2). We conclude that L_ n(\mathcal{F}_{U'}) = 0 for all n > 0 and all U'. It follows that any abelian presheaf \mathcal{F} is a quotient of an abelian presheaf \mathcal{G} with L_ n(\mathcal{G}) = 0 for all n > 0 (Modules on Sites, Lemma 18.28.8). Since L_ n(\mathcal{F}) = L_ n(\mathcal{F}^\# ) we see that the same thing is true for abelian sheaves. Thus the sequence of functors L_ n(-) is a universal delta functor on \textit{Ab}(\mathcal{C}) (Homology, Lemma 12.12.4). Since we have agreement with H^{-n}(L\pi _!(-)) for n = 0 by Lemma 21.38.8 we conclude by uniqueness of universal \delta -functors (Homology, Lemma 12.12.5) and Derived Categories, Lemma 13.16.6. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.