The Stacks project

93.9 Schemes

The deformation theory of schemes.

Example 93.9.1 (Schemes). Let $\mathcal{F}$ be the category defined as follows

  1. an object is a pair $(A, X)$ consisting of an object $A$ of $\mathcal{C}_\Lambda $ and a scheme $X$ flat over $A$, and

  2. a morphism $(f, g) : (B, Y) \to (A, X)$ consists of a morphism $f : B \to A$ in $\mathcal{C}_\Lambda $ together with a morphism $g : X \to Y$ such that

    \[ \xymatrix{ X \ar[r]_ g \ar[d] & Y \ar[d] \\ \mathop{\mathrm{Spec}}(A) \ar[r]^ f & \mathop{\mathrm{Spec}}(B) } \]

    is a cartesian commutative diagram of schemes.

The functor $p : \mathcal{F} \to \mathcal{C}_\Lambda $ sends $(A, X)$ to $A$ and $(f, g)$ to $f$. It is clear that $p$ is cofibred in groupoids. Given a scheme $X$ over $k$, let $x_0 = (k, X)$ be the corresponding object of $\mathcal{F}(k)$. We set

\[ \mathcal{D}\! \mathit{ef}_ X = \mathcal{F}_{x_0} \]

Lemma 93.9.2. Example 93.9.1 satisfies the Rim-Schlessinger condition (RS). In particular, $\mathcal{D}\! \mathit{ef}_ X$ is a deformation category for any scheme $X$ over $k$.

Proof. Let $A_1 \to A$ and $A_2 \to A$ be morphisms of $\mathcal{C}_\Lambda $. Assume $A_2 \to A$ is surjective. According to Formal Deformation Theory, Lemma 90.16.4 it suffices to show that the functor $\mathcal{F}(A_1 \times _ A A_2) \to \mathcal{F}(A_1) \times _{\mathcal{F}(A)} \mathcal{F}(A_2)$ is an equivalence of categories. Observe that

\[ \xymatrix{ \mathop{\mathrm{Spec}}(A) \ar[r] \ar[d] & \mathop{\mathrm{Spec}}(A_2) \ar[d] \\ \mathop{\mathrm{Spec}}(A_1) \ar[r] & \mathop{\mathrm{Spec}}(A_1 \times _ A A_2) } \]

is a pushout diagram as in More on Morphisms, Lemma 37.14.3. Thus the lemma is a special case of More on Morphisms, Lemma 37.14.6. $\square$

Lemma 93.9.3. In Example 93.9.1 let $X$ be a scheme over $k$. Then

\[ \text{Inf}(\mathcal{D}\! \mathit{ef}_ X) = \text{Ext}^0_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _{X/k}, \mathcal{O}_ X) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\Omega _{X/k}, \mathcal{O}_ X) = \text{Der}_ k(\mathcal{O}_ X, \mathcal{O}_ X) \]

and

\[ T\mathcal{D}\! \mathit{ef}_ X = \text{Ext}^1_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _{X/k}, \mathcal{O}_ X) \]

Proof. Recall that $\text{Inf}(\mathcal{D}\! \mathit{ef}_ X)$ is the set of automorphisms of the trivial deformation $X' = X \times _{\mathop{\mathrm{Spec}}(k)} \mathop{\mathrm{Spec}}(k[\epsilon ])$ of $X$ to $k[\epsilon ]$ equal to the identity modulo $\epsilon $. By Deformation Theory, Lemma 91.8.1 this is equal to $\text{Ext}^0_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _{X/k}, \mathcal{O}_ X)$. The equality $\text{Ext}^0_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _{X/k}, \mathcal{O}_ X) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\Omega _{X/k}, \mathcal{O}_ X)$ follows from More on Morphisms, Lemma 37.13.3. The equality $\mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\Omega _{X/k}, \mathcal{O}_ X) = \text{Der}_ k(\mathcal{O}_ X, \mathcal{O}_ X)$ follows from Morphisms, Lemma 29.32.2.

Recall that $T_{x_0}\mathcal{D}\! \mathit{ef}_ X$ is the set of isomorphism classes of flat deformations $X'$ of $X$ to $k[\epsilon ]$, more precisely, the set of isomorphism classes of $\mathcal{D}\! \mathit{ef}_ X(k[\epsilon ])$. Thus the second statement of the lemma follows from Deformation Theory, Lemma 91.8.1. $\square$

Lemma 93.9.4. In Lemma 93.9.3 if $X$ is proper over $k$, then $\text{Inf}(\mathcal{D}\! \mathit{ef}_ X)$ and $T\mathcal{D}\! \mathit{ef}_ X$ are finite dimensional.

Proof. By the lemma we have to show $\mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _{X/k}, \mathcal{O}_ X)$ and $\mathop{\mathrm{Ext}}\nolimits ^0_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _{X/k}, \mathcal{O}_ X)$ are finite dimensional. By More on Morphisms, Lemma 37.13.4 and the fact that $X$ is Noetherian, we see that $\mathop{N\! L}\nolimits _{X/k}$ has coherent cohomology sheaves zero except in degrees $0$ and $-1$. By Derived Categories of Schemes, Lemma 36.11.7 the displayed $\mathop{\mathrm{Ext}}\nolimits $-groups are finite $k$-vector spaces and the proof is complete. $\square$

In Example 93.9.1 if $X$ is a proper scheme over $k$, then $\mathcal{D}\! \mathit{ef}_ X$ admits a presentation by a smooth prorepresentable groupoid in functors over $\mathcal{C}_\Lambda $ and a fortiori has a (minimal) versal formal object. This follows from Lemmas 93.9.2 and 93.9.4 and the general discussion in Section 93.3.

Lemma 93.9.5. In Example 93.9.1 assume $X$ is a proper $k$-scheme. Assume $\Lambda $ is a complete local ring with residue field $k$ (the classical case). Then the functor

\[ F : \mathcal{C}_\Lambda \longrightarrow \textit{Sets},\quad A \longmapsto \mathop{\mathrm{Ob}}\nolimits (\mathcal{D}\! \mathit{ef}_ X(A))/\cong \]

of isomorphism classes of objects has a hull. If $\text{Der}_ k(\mathcal{O}_ X, \mathcal{O}_ X) = 0$, then $F$ is prorepresentable.

Proof. The existence of a hull follows immediately from Lemmas 93.9.2 and 93.9.4 and Formal Deformation Theory, Lemma 90.16.6 and Remark 90.15.7.

Assume $\text{Der}_ k(\mathcal{O}_ X, \mathcal{O}_ X) = 0$. Then $\mathcal{D}\! \mathit{ef}_ X$ and $F$ are equivalent by Formal Deformation Theory, Lemma 90.19.13. Hence $F$ is a deformation functor (because $\mathcal{D}\! \mathit{ef}_ X$ is a deformation category) with finite tangent space and we can apply Formal Deformation Theory, Theorem 90.18.2. $\square$

Lemma 93.9.6. In Example 93.9.1 let $X$ be a scheme over $k$. Let $U \subset X$ be an open subscheme. There is a natural functor

\[ \mathcal{D}\! \mathit{ef}_ X \longrightarrow \mathcal{D}\! \mathit{ef}_ U \]

of deformation categories.

Proof. Given a deformation of $X$ we can take the corresponding open of it to get a deformation of $U$. We omit the details. $\square$

Lemma 93.9.7. In Example 93.9.1 let $X = \mathop{\mathrm{Spec}}(P)$ be an affine scheme over $k$. With $\mathcal{D}\! \mathit{ef}_ P$ as in Example 93.8.1 there is a natural equivalence

\[ \mathcal{D}\! \mathit{ef}_ X \longrightarrow \mathcal{D}\! \mathit{ef}_ P \]

of deformation categories.

Proof. The functor sends $(A, Y)$ to $\Gamma (Y, \mathcal{O}_ Y)$. This works because any deformation of $X$ is affine by More on Morphisms, Lemma 37.2.3. $\square$

Lemma 93.9.8. In Example 93.9.1 let $X$ be a scheme over $k$ Let $p \in X$ be a point. With $\mathcal{D}\! \mathit{ef}_{\mathcal{O}_{X, p}}$ as in Example 93.8.1 there is a natural functor

\[ \mathcal{D}\! \mathit{ef}_ X \longrightarrow \mathcal{D}\! \mathit{ef}_{\mathcal{O}_{X, p}} \]

of deformation categories.

Proof. Choose an affine open $U = \mathop{\mathrm{Spec}}(P) \subset X$ containing $p$. Then $\mathcal{O}_{X, p}$ is a localization of $P$. We combine the functors from Lemmas 93.9.6, 93.9.7, and 93.8.7. $\square$

Situation 93.9.9. Let $\Lambda \to k$ be as in Section 93.3. Let $X$ be a scheme over $k$ which has an affine open covering $X = U_1 \cup U_2$ with $U_{12} = U_1 \cap U_2$ affine too. Write $U_1 = \mathop{\mathrm{Spec}}(P_1)$, $U_2 = \mathop{\mathrm{Spec}}(P_2)$ and $U_{12} = \mathop{\mathrm{Spec}}(P_{12})$. Let $\mathcal{D}\! \mathit{ef}_ X$, $\mathcal{D}\! \mathit{ef}_{U_1}$, $\mathcal{D}\! \mathit{ef}_{U_2}$, and $\mathcal{D}\! \mathit{ef}_{U_{12}}$ be as in Example 93.9.1 and let $\mathcal{D}\! \mathit{ef}_{P_1}$, $\mathcal{D}\! \mathit{ef}_{P_2}$, and $\mathcal{D}\! \mathit{ef}_{P_{12}}$ be as in Example 93.8.1.

Lemma 93.9.10. In Situation 93.9.9 there is an equivalence

\[ \mathcal{D}\! \mathit{ef}_ X = \mathcal{D}\! \mathit{ef}_{P_1} \times _{\mathcal{D}\! \mathit{ef}_{P_{12}}} \mathcal{D}\! \mathit{ef}_{P_2} \]

of deformation categories, see Examples 93.9.1 and 93.8.1.

Proof. It suffices to show that the functors of Lemma 93.9.6 define an equivalence

\[ \mathcal{D}\! \mathit{ef}_ X \longrightarrow \mathcal{D}\! \mathit{ef}_{U_1} \times _{\mathcal{D}\! \mathit{ef}_{U_{12}}} \mathcal{D}\! \mathit{ef}_{U_2} \]

because then we can apply Lemma 93.9.7 to translate into rings. To do this we construct a quasi-inverse. Denote $F_ i : \mathcal{D}\! \mathit{ef}_{U_ i} \to \mathcal{D}\! \mathit{ef}_{U_{12}}$ the functor of Lemma 93.9.6. An object of the RHS is given by an $A$ in $\mathcal{C}_\Lambda $, objects $(A, V_1) \to (k, U_1)$ and $(A, V_2) \to (k, U_2)$, and a morphism

\[ g : F_1(A, V_1) \to F_2(A, V_2) \]

Now $F_ i(A, V_ i) = (A, V_{i, 3 - i})$ where $V_{i, 3 - i} \subset V_ i$ is the open subscheme whose base change to $k$ is $U_{12} \subset U_ i$. The morphism $g$ defines an isomorphism $V_{1, 2} \to V_{2, 1}$ of schemes over $A$ compatible with $\text{id} : U_{12} \to U_{12}$ over $k$. Thus $(\{ 1, 2\} , V_ i, V_{i, 3 - i}, g, g^{-1})$ is a glueing data as in Schemes, Section 26.14. Let $Y$ be the glueing, see Schemes, Lemma 26.14.1. Then $Y$ is a scheme over $A$ and the compatibilities mentioned above show that there is a canonical isomorphism $Y \times _{\mathop{\mathrm{Spec}}(A)} \mathop{\mathrm{Spec}}(k) = X$. Thus $(A, Y) \to (k, X)$ is an object of $\mathcal{D}\! \mathit{ef}_ X$. We omit the verification that this construction is a functor and is quasi-inverse to the given one. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DY6. Beware of the difference between the letter 'O' and the digit '0'.