## 42.51 Two technical lemmas

In this section we develop some additional tools to allow us to work more comfortably with localized Chern classes. The following lemma is a more precise version of something we've already encountered in the proofs of Lemmas 42.49.6 and 42.49.7.

Lemma 42.51.1. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Let $b : W \longrightarrow \mathbf{P}^1_ X$ be a proper morphism of schemes. Let $n \geq 1$. For $i = 1, \ldots , n$ let $Z_ i \subset X$ be a closed subscheme, let $Q_ i \in D(\mathcal{O}_ W)$ be a perfect object, let $p_ i \geq 0$ be an integer, and let $T_ i \subset W_\infty$, $i = 1, \ldots , n$ be closed. Denote $W_ i = b^{-1}(\mathbf{P}^1_{Z_ i})$. Assume

1. for $i = 1, \ldots , n$ the assumption of Lemma 42.49.1 hold for $b, Z_ i, Q_ i, T_ i, p_ i$,

2. $Q_ i|_{W \setminus W_ i}$ is zero, resp. isomorphic to a finite locally free module of rank $< p_ i$ placed in cohomological degree $0$,

3. $Q_ i$ on $W$ satisfies assumption (3) of Situation 42.50.1.

Then $P'_{p_ n}(Q_ n) \circ \ldots \circ P'_{p_1}(Q_1)$ is equal to

$(W_{n, \infty } \cap \ldots \cap W_{1, \infty } \to Z_ n \cap \ldots \cap Z_1)_* \circ P'_{p_ n}(Q_ n|_{W_{n, \infty }}) \circ \ldots \circ P'_{p_1}(Q_1|_{W_{1, \infty }}) \circ C$

in $A^{p_ n + \ldots + p_1}(Z_ n \cap \ldots \cap Z_1 \to X)$, resp. $c'_{p_ n}(Q_ n) \circ \ldots \circ c'_{p_1}(Q_1)$ is equal to

$(W_{n, \infty } \cap \ldots \cap W_{1, \infty } \to Z_ n \cap \ldots \cap Z_1)_* \circ c'_{p_ n}(Q_ n|_{W_{n, \infty }}) \circ \ldots \circ c'_{p_1}(Q_1|_{W_{1, \infty }}) \circ C$

in $A^{p_ n + \ldots + p_1}(Z_ n \cap \ldots \cap Z_1 \to X)$.

Proof. Let us prove the statement on Chern classes by induction on $n$; the statement on $P_ p(-)$ is proved in the exact same manner. The case $n = 1$ is the construction of $c'_{p_1}(Q_1)$ because $W_{1, \infty }$ is the inverse image of $Z_1$ in $W_\infty$. For $n > 1$ we have by induction that $c'_{p_ n}(Q_ n) \circ \ldots \circ c'_{p_1}(Q_1)$ is equal to

$c'_{p_ n}(Q_ n) \circ (W_{n - 1, \infty } \cap \ldots \cap W_{1, \infty } \to Z_{n - 1} \cap \ldots \cap Z_1)_* \circ c'_{p_{n - 1}}(Q_{n - 1}|_{W_{n - 1}, \infty }) \circ \ldots \circ c'_{p_1}(Q_1|_{W_{1, \infty }}) \circ C$

By Lemma 42.49.2 the restriction of $c'_{p_ n}(Q_ n)$ to $Z_{n - 1} \cap \ldots \cap Z_1$ is computed by the closed subset $Z_ n \cap \ldots \cap Z_1$, the morphism $b' : W_{n - 1} \cap \ldots \cap W_1 \to \mathbf{P}^1_{Z_{n - 1} \cap \ldots \cap Z_1}$ and the restriction of $Q_ n$ to $W_{n - 1} \cap \ldots \cap W_1$. Observe that $(b')^{-1}(Z_ n) = W_ n \cap \ldots \cap W_1$ and that $(W_ n \cap \ldots \cap W_1)_\infty = W_{n, \infty } \cap \ldots \cap W_{1, \infty }$. Denote $C_{n - 1} \in A^0(W_{n - 1, \infty } \cap \ldots \cap W_{1, \infty } \to Z_{n - 1} \cap \ldots \cap Z_1)$ the class of Lemma 42.48.1. We conclude the restriction of $c'_{p_ n}(Q_ n)$ to $Z_{n - 1} \cap \ldots \cap Z_1$ is

\begin{align*} & (W_{n, \infty } \cap \ldots \cap W_{1, \infty } \to Z_ n \cap \ldots \cap Z_1)_* \circ c'_{p_ n}(Q_ n|_{(W_ n \cap \ldots \cap W_1)_\infty }) \circ C_{n - 1} \\ & = (W_{n, \infty } \cap \ldots \cap W_{1, \infty } \to Z_ n \cap \ldots \cap Z_1)_* \circ c'_{p_ n}(Q_ n|_{W_{n, \infty }}) \circ C_{n - 1} \end{align*}

where the equality follows from Lemma 42.47.3 (we omit writing the restriction on the right). Hence the above becomes

\begin{align*} (W_{n, \infty } \cap \ldots \cap W_{1, \infty } \to Z_ n \cap \ldots \cap Z_1)_* \circ c'_{p_ n}(Q_ n|_{W_ n, \infty }) \circ \\ C_{n - 1} \circ (W_{n - 1, \infty } \cap \ldots \cap W_{1, \infty } \to Z_{n - 1} \cap \ldots \cap Z_1)_* \\ \circ c'_{p_{n - 1}}(Q_{n - 1}|_{W_{n - 1}, \infty }) \circ \ldots \circ c'_{p_1}(Q_1|_{W_{1, \infty }}) \circ C \end{align*}

By Lemma 42.48.4 we know that the composition $C_{n - 1} \circ (W_{n - 1, \infty } \cap \ldots \cap W_{1, \infty } \to Z_{n - 1} \cap \ldots \cap Z_1)_*$ is the identity on elements in the image of the gysin map

$(W_{n - 1, \infty } \cap \ldots \cap W_{1, \infty } \to W_{n - 1} \cap \ldots \cap W_1)^*$

Thus it suffices to show that any element in the image of $c'_{p_{n - 1}}(Q_{n - 1}|_{W_{n - 1}, \infty }) \circ \ldots \circ c'_{p_1}(Q_1|_{W_{1, \infty }}) \circ C$ is in the image of the gysin map. We may write

$c'_{p_ i}(Q_ i|_{W_{i, \infty }}) = \text{restriction of } c_{p_ i}(W_ i \to W, Q_ i) \text{ to } W_{i, \infty }$

by Lemma 42.50.9 and assumptions (2) and (3) on $Q_ i$ in the statement of the lemma. Thus, if $\beta \in \mathop{\mathrm{CH}}\nolimits _{k + 1}(W)$ restricts to the flat pullback of $\alpha$ on $b^{-1}(\mathbf{A}^1_ X)$, then

\begin{align*} & c'_{p_{n - 1}}(Q_{n - 1}|_{W_{n - 1}, \infty }) \cap \ldots \cap c'_{p_1}(Q_1|_{W_{1, \infty }}) \cap C \cap \alpha \\ & = c'_{p_{n - 1}}(Q_{n - 1}|_{W_{n - 1}, \infty }) \cap \ldots \cap c'_{p_1}(Q_1|_{W_{1, \infty }}) \cap i_\infty ^* \beta \\ & = c_{p_{n - 1}}(W_{n - 1} \to W, Q_{n - 1}) \cap \ldots \cap c_{p_{n - 1}}(W_1 \to W, Q_1) \cap i_\infty ^* \beta \\ & = (W_{n - 1, \infty } \cap \ldots \cap W_{1, \infty } \to W_{n - 1} \cap \ldots \cap W_1)^* \left(c_{p_{n - 1}}(W_{n - 1} \to W, Q_{n - 1}) \cap \ldots \cap c_{p_1}(W_1 \to W, Q_1) \cap \beta \right) \end{align*}

as desired. Namely, for the last equality we use that $c_{p_ i}(W_ i \to W, Q_ i)$ is a bivariant class and hence commutes with $i_\infty ^*$ by definition. $\square$

The following lemma gives us a tremendous amount of flexibility if we want to compute the localized Chern classes of a complex.

Lemma 42.51.2. Assume $(S, \delta ), X, Z, b : W \to \mathbf{P}^1_ X, Q, T, p$ satisfy the assumptions of Lemma 42.49.1. Let $F \in D(\mathcal{O}_ X)$ be a perfect object such that

1. the restriction of $Q$ to $b^{-1}(\mathbf{A}^1_ X)$ is isomorphic to the pullback of $F$,

2. $F|_{X \setminus Z}$ is zero, resp. isomorphic to a finite locally free $\mathcal{O}_{X \setminus Z}$-module of rank $< p$ sitting in cohomological degree $0$, and

3. $Q$ on $W$ and $F$ on $X$ satisfy assumption (3) of Situation 42.50.1.

Then the class $P'_ p(Q)$, resp. $c'_ p(Q)$ in $A^ p(Z \to X)$ constructed in Lemma 42.49.1 is equal to $P_ p(Z \to X, F)$, resp. $c_ p(Z \to X, F)$ from Definition 42.50.3.

Proof. The assumptions are preserved by base change with a morphism $X' \to X$ locally of finite type. Hence it suffices to show that $P_ p(Z \to X, F) \cap \alpha = P'_ p(Q) \cap \alpha$, resp. $c_ p(Z \to X, F) \cap \alpha = c'_ p(Q) \cap \alpha$ for any $\alpha \in \mathop{\mathrm{CH}}\nolimits _ k(X)$. Choose $\beta \in \mathop{\mathrm{CH}}\nolimits _{k + 1}(W)$ whose restriction to $b^{-1}(\mathbf{A}^1_ X)$ is equal to the flat pullback of $\alpha$ as in the construction of $C$ in Lemma 42.48.1. Denote $W' = b^{-1}(Z)$ and denote $E = W'_\infty \subset W_\infty$ the inverse image of $Z$ by $W_\infty \to X$. The lemma follows from the following sequence of equalities (the case of $P_ p$ is similar)

\begin{align*} c'_ p(Q) \cap \alpha & = (E \to Z)_*(c'_ p(Q|_ E) \cap i_\infty ^*\beta ) \\ & = (E \to Z)_*(c_ p(E \to W_\infty , Q|_{W_\infty }) \cap i_\infty ^*\beta ) \\ & = (W'_\infty \to Z)_*(c_ p(W' \to W, Q) \cap i_\infty ^*\beta ) \\ & = (W'_\infty \to Z)_*((i'_\infty )^*(c_ p(W' \to W, Q) \cap \beta )) \\ & = (W'_\infty \to Z)_*((i'_\infty )^*(c_ p(Z' \to X, F) \cap \beta )) \\ & = (W'_0 \to Z)_*((i'_0)^*(c_ p(Z' \to X, F) \cap \beta )) \\ & = (W'_0 \to Z)_*(c_ p(Z' \to X, F) \cap i_0^*\beta )) \\ & = c_ p(Z \to X, F) \cap \alpha \end{align*}

The first equality is the construction of $c'_ p(Q)$ in Lemma 42.49.1. The second is Lemma 42.50.9. The base change of $W' \to W$ by $W_\infty \to W$ is the morphism $E = W'_\infty \to W_\infty$. Hence the third equality holds by Lemma 42.50.4. The fourth equality, in which $i'_\infty : W'_\infty \to W'$ is the inclusion morphism, follows from the fact that $c_ p(W' \to W, Q)$ is a bivariant class. For the fith equality, observe that $c_ p(W' \to W, Q)$ and $c_ p(Z' \to X, F)$ restrict to the same bivariant class in $A^ p((b')^{-1} \to b^{-1}(\mathbf{A}^1_ X))$ by assumption (1) of the lemma which says that $Q$ and $F$ restrict to the same object of $D(\mathcal{O}_{b^{-1}(\mathbf{A}^1_ X)})$; use Lemma 42.50.4. Since $(i'_\infty )^*$ annihilates cycles supported on $W'_\infty$ (see Remark 42.29.6) we conclude the fifth equality is true. The sixth equality holds because $W'_\infty$ and $W'_0$ are the pullbacks of the rationally equivalent effective Cartier divisors $D_0, D_\infty$ in $\mathbf{P}^1_ Z$ and hence $i_\infty ^*\beta$ and $i_0^*\beta$ map to the same cycle class on $W'$; namely, both represent the class $c_1(\mathcal{O}_{\mathbf{P}^1_ Z}(1)) \cap c_ p(Z \to X, F_) \cap \beta$ by Lemma 42.29.4. The seventh equality holds because $c_ p(Z \to X, F)$ is a bivariant class. By construction $W'_0 = Z$ and $i_0^*\beta = \alpha$ which explains why the final equality holds. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FE6. Beware of the difference between the letter 'O' and the digit '0'.