Lemma 29.3.1. Let $X$ be a scheme. Assume that

$X$ is quasi-compact,

for every quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_ X$ we have $H^1(X, \mathcal{I}) = 0$.

Then $X$ is affine.

We have seen that on an affine scheme the higher cohomology groups of any quasi-coherent sheaf vanish (Lemma 29.2.2). It turns out that this also characterizes affine schemes. We give two versions.

Lemma 29.3.1. Let $X$ be a scheme. Assume that

$X$ is quasi-compact,

for every quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_ X$ we have $H^1(X, \mathcal{I}) = 0$.

Then $X$ is affine.

**Proof.**
Let $x \in X$ be a closed point. Let $U \subset X$ be an affine open neighbourhood of $x$. Write $U = \mathop{\mathrm{Spec}}(A)$ and let $\mathfrak m \subset A$ be the maximal ideal corresponding to $x$. Set $Z = X \setminus U$ and $Z' = Z \cup \{ x\} $. By Schemes, Lemma 25.12.4 there are quasi-coherent sheaves of ideals $\mathcal{I}$, resp. $\mathcal{I}'$ cutting out the reduced closed subschemes $Z$, resp. $Z'$. Consider the short exact sequence

\[ 0 \to \mathcal{I}' \to \mathcal{I} \to \mathcal{I}/\mathcal{I}' \to 0. \]

Since $x$ is a closed point of $X$ and $x \not\in Z$ we see that $\mathcal{I}/\mathcal{I}'$ is supported at $x$. In fact, the restriction of $\mathcal{I}/\mathcal{I'}$ to $U$ corresponds to the $A$-module $A/\mathfrak m$. Hence we see that $\Gamma (X, \mathcal{I}/\mathcal{I'}) = A/\mathfrak m$. Since by assumption $H^1(X, \mathcal{I}') = 0$ we see there exists a global section $f \in \Gamma (X, \mathcal{I})$ which maps to the element $1 \in A/\mathfrak m$ as a section of $\mathcal{I}/\mathcal{I'}$. Clearly we have $x \in X_ f \subset U$. This implies that $X_ f = D(f_ A)$ where $f_ A$ is the image of $f$ in $A = \Gamma (U, \mathcal{O}_ X)$. In particular $X_ f$ is affine.

Consider the union $W = \bigcup X_ f$ over all $f \in \Gamma (X, \mathcal{O}_ X)$ such that $X_ f$ is affine. Obviously $W$ is open in $X$. By the arguments above every closed point of $X$ is contained in $W$. The closed subset $X \setminus W$ of $X$ is also quasi-compact (see Topology, Lemma 5.12.3). Hence it has a closed point if it is nonempty (see Topology, Lemma 5.12.8). This would contradict the fact that all closed points are in $W$. Hence we conclude $X = W$.

Choose finitely many $f_1, \ldots , f_ n \in \Gamma (X, \mathcal{O}_ X)$ such that $X = X_{f_1} \cup \ldots \cup X_{f_ n}$ and such that each $X_{f_ i}$ is affine. This is possible as we've seen above. By Properties, Lemma 27.27.3 to finish the proof it suffices to show that $f_1, \ldots , f_ n$ generate the unit ideal in $\Gamma (X, \mathcal{O}_ X)$. Consider the short exact sequence

\[ \xymatrix{ 0 \ar[r] & \mathcal{F} \ar[r] & \mathcal{O}_ X^{\oplus n} \ar[rr]^{f_1, \ldots , f_ n} & & \mathcal{O}_ X \ar[r] & 0 } \]

The arrow defined by $f_1, \ldots , f_ n$ is surjective since the opens $X_{f_ i}$ cover $X$. We let $\mathcal{F}$ be the kernel of this surjective map. Observe that $\mathcal{F}$ has a filtration

\[ 0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_ n = \mathcal{F} \]

so that each subquotient $\mathcal{F}_ i/\mathcal{F}_{i - 1}$ is isomorphic to a quasi-coherent sheaf of ideals. Namely we can take $\mathcal{F}_ i$ to be the intersection of $\mathcal{F}$ with the first $i$ direct summands of $\mathcal{O}_ X^{\oplus n}$. The assumption of the lemma implies that $H^1(X, \mathcal{F}_ i/\mathcal{F}_{i - 1}) = 0$ for all $i$. This implies that $H^1(X, \mathcal{F}_2) = 0$ because it is sandwiched between $H^1(X, \mathcal{F}_1)$ and $H^1(X, \mathcal{F}_2/\mathcal{F}_1)$. Continuing like this we deduce that $H^1(X, \mathcal{F}) = 0$. Therefore we conclude that the map

\[ \xymatrix{ \bigoplus \nolimits _{i = 1, \ldots , n} \Gamma (X, \mathcal{O}_ X) \ar[rr]^{f_1, \ldots , f_ n} & & \Gamma (X, \mathcal{O}_ X) } \]

is surjective as desired. $\square$

Note that if $X$ is a Noetherian scheme then every quasi-coherent sheaf of ideals is automatically a coherent sheaf of ideals and a finite type quasi-coherent sheaf of ideals. Hence the preceding lemma and the next lemma both apply in this case.

Lemma 29.3.2. Let $X$ be a scheme. Assume that

$X$ is quasi-compact,

$X$ is quasi-separated, and

$H^1(X, \mathcal{I}) = 0$ for every quasi-coherent sheaf of ideals $\mathcal{I}$ of finite type.

Then $X$ is affine.

**Proof.**
By Properties, Lemma 27.22.3 every quasi-coherent sheaf of ideals is a directed colimit of quasi-coherent sheaves of ideals of finite type. By Cohomology, Lemma 20.20.1 taking cohomology on $X$ commutes with directed colimits. Hence we see that $H^1(X, \mathcal{I}) = 0$ for every quasi-coherent sheaf of ideals on $X$. In other words we see that Lemma 29.3.1 applies.
$\square$

We can use the arguments given above to find a sufficient condition to see when an invertible sheaf is ample. However, we warn the reader that this condition is not necessary.

Lemma 29.3.3. Let $X$ be a scheme. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Assume that

$X$ is quasi-compact,

for every quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_ X$ there exists an $n \geq 1$ such that $H^1(X, \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n}) = 0$.

Then $\mathcal{L}$ is ample.

**Proof.**
This is proved in exactly the same way as Lemma 29.3.1. Let $x \in X$ be a closed point. Let $U \subset X$ be an affine open neighbourhood of $x$ such that $\mathcal{L}|_ U \cong \mathcal{O}_ U$. Write $U = \mathop{\mathrm{Spec}}(A)$ and let $\mathfrak m \subset A$ be the maximal ideal corresponding to $x$. Set $Z = X \setminus U$ and $Z' = Z \cup \{ x\} $. By Schemes, Lemma 25.12.4 there are quasi-coherent sheaves of ideals $\mathcal{I}$, resp. $\mathcal{I}'$ cutting out the reduced closed subschemes $Z$, resp. $Z'$. Consider the short exact sequence

\[ 0 \to \mathcal{I}' \to \mathcal{I} \to \mathcal{I}/\mathcal{I}' \to 0. \]

For every $n \geq 1$ we obtain a short exact sequence

\[ 0 \to \mathcal{I}' \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n} \to \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n} \to \mathcal{I}/\mathcal{I}' \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n} \to 0. \]

By our assumption we may pick $n$ such that $H^1(X, \mathcal{I}' \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n}) = 0$. Since $x$ is a closed point of $X$ and $x \not\in Z$ we see that $\mathcal{I}/\mathcal{I}'$ is supported at $x$. In fact, the restriction of $\mathcal{I}/\mathcal{I'}$ to $U$ corresponds to the $A$-module $A/\mathfrak m$. Since $\mathcal{L}$ is trivial on $U$ we see that the restriction of $\mathcal{I}/\mathcal{I}' \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n}$ to $U$ also corresponds to the $A$-module $A/\mathfrak m$. Hence we see that $\Gamma (X, \mathcal{I}/\mathcal{I'} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n}) = A/\mathfrak m$. By our choice of $n$ we see there exists a global section $s \in \Gamma (X, \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n})$ which maps to the element $1 \in A/\mathfrak m$. Clearly we have $x \in X_ s \subset U$ because $s$ vanishes at points of $Z$. This implies that $X_ s = D(f)$ where $f \in A$ is the image of $s$ in $A \cong \Gamma (U, \mathcal{L}^{\otimes n})$. In particular $X_ s$ is affine.

Consider the union $W = \bigcup X_ s$ over all $s \in \Gamma (X, \mathcal{L}^{\otimes n})$ for $n \geq 1$ such that $X_ s$ is affine. Obviously $W$ is open in $X$. By the arguments above every closed point of $X$ is contained in $W$. The closed subset $X \setminus W$ of $X$ is also quasi-compact (see Topology, Lemma 5.12.3). Hence it has a closed point if it is nonempty (see Topology, Lemma 5.12.8). This would contradict the fact that all closed points are in $W$. Hence we conclude $X = W$. This means that $\mathcal{L}$ is ample by Properties, Definition 27.26.1. $\square$

There is a variant of Lemma 29.3.3 with finite type ideal sheaves which we will formulate and prove here if we ever need it.

Lemma 29.3.4. Let $f : X \to Y$ be a quasi-compact morphism with $X$ and $Y$ quasi-separated. If $R^1f_*\mathcal{I} = 0$ for every quasi-coherent sheaf of ideals $\mathcal{I}$ on $X$, then $f$ is affine.

**Proof.**
Let $V \subset Y$ be an affine open subscheme. We have to show that $U = f^{-1}(V)$ is affine. The inclusion morphism $V \to Y$ is quasi-compact by Schemes, Lemma 25.21.14. Hence the base change $U \to X$ is quasi-compact, see Schemes, Lemma 25.19.3. Thus any quasi-coherent sheaf of ideals $\mathcal{I}$ on $U$ extends to a quasi-coherent sheaf of ideals on $X$, see Properties, Lemma 27.22.1. Since the formation of $R^1f_*$ is local on $Y$ (Cohomology, Section 20.8) we conclude that $R^1(U \to V)_*\mathcal{I} = 0$ by the assumption in the lemma. Hence by the Leray Spectral sequence (Cohomology, Lemma 20.14.4) we conclude that $H^1(U, \mathcal{I}) = H^1(V, (U \to V)_*\mathcal{I})$. Since $(U \to V)_*\mathcal{I}$ is quasi-coherent by Schemes, Lemma 25.24.1, we have $H^1(V, (U \to V)_*\mathcal{I}) = 0$ by Lemma 29.2.2. Thus we find that $U$ is affine by Lemma 29.3.1.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (1)

Comment #932 by correction_bot on