Processing math: 100%

The Stacks project

32.10 Descending relative objects

The following lemma is typical of the type of results in this section. We write out the “standard” proof completely. It may be faster to convince yourself that the result is true than to read this proof.

Lemma 32.10.1. Let I be a directed set. Let (S_ i, f_{ii'}) be an inverse system of schemes over I. Assume

  1. the morphisms f_{ii'} : S_ i \to S_{i'} are affine,

  2. the schemes S_ i are quasi-compact and quasi-separated.

Let S = \mathop{\mathrm{lim}}\nolimits _ i S_ i. Then we have the following:

  1. For any morphism of finite presentation X \to S there exists an index i \in I and a morphism of finite presentation X_ i \to S_ i such that X \cong X_{i, S} as schemes over S.

  2. Given an index i \in I, schemes X_ i, Y_ i of finite presentation over S_ i, and a morphism \varphi : X_{i, S} \to Y_{i, S} over S, there exists an index i' \geq i and a morphism \varphi _{i'} : X_{i, S_{i'}} \to Y_{i, S_{i'}} whose base change to S is \varphi .

  3. Given an index i \in I, schemes X_ i, Y_ i of finite presentation over S_ i and a pair of morphisms \varphi _ i, \psi _ i : X_ i \to Y_ i whose base changes \varphi _{i, S} = \psi _{i, S} are equal, there exists an index i' \geq i such that \varphi _{i, S_{i'}} = \psi _{i, S_{i'}}.

In other words, the category of schemes of finite presentation over S is the colimit over I of the categories of schemes of finite presentation over S_ i.

Proof. In case each of the schemes S_ i is affine, and we consider only affine schemes of finite presentation over S_ i, resp. S this lemma is equivalent to Algebra, Lemma 10.127.8. We claim that the affine case implies the lemma in general.

Let us prove (3). Suppose given an index i \in I, schemes X_ i, Y_ i of finite presentation over S_ i and a pair of morphisms \varphi _ i, \psi _ i : X_ i \to Y_ i. Assume that the base changes are equal: \varphi _{i, S} = \psi _{i, S}. We will use the notation X_{i'} = X_{i, S_{i'}} and Y_{i'} = Y_{i, S_{i'}} for i' \geq i. We also set X = X_{i, S} and Y = Y_{i, S}. Note that according to Lemma 32.2.3 we have X = \mathop{\mathrm{lim}}\nolimits _{i' \geq i} X_{i'} and similarly for Y. Additionally we denote \varphi _{i'} and \psi _{i'} (resp. \varphi and \psi ) the base change of \varphi _ i and \psi _ i to S_{i'} (resp. S). So our assumption means that \varphi = \psi . Since Y_ i and X_ i are of finite presentation over S_ i, and since S_ i is quasi-compact and quasi-separated, also X_ i and Y_ i are quasi-compact and quasi-separated (see Morphisms, Lemma 29.21.10). Hence we may choose a finite affine open covering Y_ i = \bigcup V_{j, i} such that each V_{j, i} maps into an affine open of S. As above, denote V_{j, i'} the inverse image of V_{j, i} in Y_{i'} and V_ j the inverse image in Y. The immersions V_{j, i'} \to Y_{i'} are quasi-compact, and the inverse images U_{j, i'} = \varphi _ i^{-1}(V_{j, i'}) and U_{j, i'}' = \psi _ i^{-1}(V_{j, i'}) are quasi-compact opens of X_{i'}. By assumption the inverse images of V_ j under \varphi and \psi in X are equal. Hence by Lemma 32.4.11 there exists an index i' \geq i such that of U_{j, i'} = U_{j, i'}' in X_{i'}. Choose an finite affine open covering U_{j, i'} = U_{j, i'}' = \bigcup W_{j, k, i'} which induce coverings U_{j, i''} = U_{j, i''}' = \bigcup W_{j, k, i''} for all i'' \geq i'. By the affine case there exists an index i'' such that \varphi _{i''}|_{W_{j, k, i''}} = \psi _{i''}|_{W_{j, k, i''}} for all j, k. Then i'' is an index such that \varphi _{i''} = \psi _{i''} and (3) is proved.

Let us prove (2). Suppose given an index i \in I, schemes X_ i, Y_ i of finite presentation over S_ i and a morphism \varphi : X_{i, S} \to Y_{i, S}. We will use the notation X_{i'} = X_{i, S_{i'}} and Y_{i'} = Y_{i, S_{i'}} for i' \geq i. We also set X = X_{i, S} and Y = Y_{i, S}. Note that according to Lemma 32.2.3 we have X = \mathop{\mathrm{lim}}\nolimits _{i' \geq i} X_{i'} and similarly for Y. Since Y_ i and X_ i are of finite presentation over S_ i, and since S_ i is quasi-compact and quasi-separated, also X_ i and Y_ i are quasi-compact and quasi-separated (see Morphisms, Lemma 29.21.10). Hence we may choose a finite affine open covering Y_ i = \bigcup V_{j, i} such that each V_{j, i} maps into an affine open of S. As above, denote V_{j, i'} the inverse image of V_{j, i} in Y_{i'} and V_ j the inverse image in Y. The immersions V_ j \to Y are quasi-compact, and the inverse images U_ j = \varphi ^{-1}(V_ j) are quasi-compact opens of X. Hence by Lemma 32.4.11 there exists an index i' \geq i and quasi-compact opens U_{j, i'} of X_{i'} whose inverse image in X is U_ j. Choose an finite affine open covering U_{j, i'} = \bigcup W_{j, k, i'} which induce affine open coverings U_{j, i''} = \bigcup W_{j, k, i''} for all i'' \geq i' and an affine open covering U_ j = \bigcup W_{j, k}. By the affine case there exists an index i'' and morphisms \varphi _{j, k, i''} : W_{j, k, i''} \to V_{j, i''} such that \varphi |_{W_{j, k}} = \varphi _{j, k, i'', S} for all j, k. By part (3) proved above, there is a further index i''' \geq i'' such that

\varphi _{j_1, k_1, i'', S_{i'''}}|_{W_{j_1, k_1, i'''} \cap W_{j_2, k_2, i'''}} = \varphi _{j_2, k_2, i'', S_{i'''}}|_{W_{j_1, k_1, i'''} \cap W_{j_2, k_2, i'''}}

for all j_1, j_2, k_1, k_2. Then i''' is an index such that there exists a morphism \varphi _{i'''} : X_{i'''} \to Y_{i'''} whose base change to S gives \varphi . Hence (2) holds.

Let us prove (1). Suppose given a scheme X of finite presentation over S. Since X is of finite presentation over S, and since S is quasi-compact and quasi-separated, also X is quasi-compact and quasi-separated (see Morphisms, Lemma 29.21.10). Choose a finite affine open covering X = \bigcup U_ j such that each U_ j maps into an affine open V_ j \subset S. Denote U_{j_1j_2} = U_{j_1} \cap U_{j_2} and U_{j_1j_2j_3} = U_{j_1} \cap U_{j_2} \cap U_{j_3}. By Lemmas 32.4.11 and 32.4.13 we can find an index i_1 and affine opens V_{j, i_1} \subset S_{i_1} such that each V_ j is the inverse of this in S. Let V_{j, i} be the inverse image of V_{j, i_1} in S_ i for i \geq i_1. By the affine case we may find an index i_2 \geq i_1 and affine schemes U_{j, i_2} \to V_{j, i_2} such that U_ j = S \times _{S_{i_2}} U_{j, i_2} is the base change. Denote U_{j, i} = S_ i \times _{S_{i_2}} U_{j, i_2} for i \geq i_2. By Lemma 32.4.11 there exists an index i_3 \geq i_2 and open subschemes W_{j_1, j_2, i_3} \subset U_{j_1, i_3} whose base change to S is equal to U_{j_1j_2}. Denote W_{j_1, j_2, i} = S_ i \times _{S_{i_3}} W_{j_1, j_2, i_3} for i \geq i_3. By part (2) shown above there exists an index i_4 \geq i_3 and morphisms \varphi _{j_1, j_2, i_4} : W_{j_1, j_2, i_4} \to W_{j_2, j_1, i_4} whose base change to S gives the identity morphism U_{j_1j_2} = U_{j_2j_1} for all j_1, j_2. For all i \geq i_4 denote \varphi _{j_1, j_2, i} = \text{id}_ S \times \varphi _{j_1, j_2, i_4} the base change. We claim that for some i_5 \geq i_4 the system ((U_{j, i_5})_ j, (W_{j_1, j_2, i_5})_{j_1, j_2}, (\varphi _{j_1, j_2, i_5})_{j_1, j_2}) forms a glueing datum as in Schemes, Section 26.14. In order to see this we have to verify that for i large enough we have

\varphi _{j_1, j_2, i}^{-1}(W_{j_1, j_2, i} \cap W_{j_1, j_3, i}) = W_{j_1, j_2, i} \cap W_{j_1, j_3, i}

and that for large enough i the cocycle condition holds. The first condition follows from Lemma 32.4.11 and the fact that U_{j_2j_1j_3} = U_{j_1j_2j_3}. The second from part (1) of the lemma proved above and the fact that the cocycle condition holds for the maps \text{id} : U_{j_1j_2} \to U_{j_2j_1}. Ok, so now we can use Schemes, Lemma 26.14.2 to glue the system ((U_{j, i_5})_ j, (W_{j_1, j_2, i_5})_{j_1, j_2}, (\varphi _{j_1, j_2, i_5})_{j_1, j_2}) to get a scheme X_{i_5} \to S_{i_5}. By construction the base change of X_{i_5} to S is formed by glueing the open affines U_ j along the opens U_{j_1} \leftarrow U_{j_1j_2} \rightarrow U_{j_2}. Hence S \times _{S_{i_5}} X_{i_5} \cong X as desired. \square

Lemma 32.10.2. Let I be a directed set. Let (S_ i, f_{ii'}) be an inverse system of schemes over I. Assume

  1. all the morphisms f_{ii'} : S_ i \to S_{i'} are affine,

  2. all the schemes S_ i are quasi-compact and quasi-separated.

Let S = \mathop{\mathrm{lim}}\nolimits _ i S_ i. Then we have the following:

  1. For any sheaf of \mathcal{O}_ S-modules \mathcal{F} of finite presentation there exists an index i \in I and a sheaf of \mathcal{O}_{S_ i}-modules of finite presentation \mathcal{F}_ i such that \mathcal{F} \cong f_ i^*\mathcal{F}_ i.

  2. Suppose given an index i \in I, sheaves of \mathcal{O}_{S_ i}-modules \mathcal{F}_ i, \mathcal{G}_ i of finite presentation and a morphism \varphi : f_ i^*\mathcal{F}_ i \to f_ i^*\mathcal{G}_ i over S. Then there exists an index i' \geq i and a morphism \varphi _{i'} : f_{i'i}^*\mathcal{F}_ i \to f_{i'i}^*\mathcal{G}_ i whose base change to S is \varphi .

  3. Suppose given an index i \in I, sheaves of \mathcal{O}_{S_ i}-modules \mathcal{F}_ i, \mathcal{G}_ i of finite presentation and a pair of morphisms \varphi _ i, \psi _ i : \mathcal{F}_ i \to \mathcal{G}_ i. Assume that the base changes are equal: f_ i^*\varphi _ i = f_ i^*\psi _ i. Then there exists an index i' \geq i such that f_{i'i}^*\varphi _ i = f_{i'i}^*\psi _ i.

In other words, the category of modules of finite presentation over S is the colimit over I of the categories modules of finite presentation over S_ i.

Proof. We sketch two proofs, but we omit the details.

First proof. If S and S_ i are affine schemes, then this lemma is equivalent to Algebra, Lemma 10.127.6. In the general case, use Zariski glueing to deduce it from the affine case.

Second proof. We use

  1. there is an equivalence of categories between quasi-coherent \mathcal{O}_ S-modules and vector bundles over S, see Constructions, Section 27.6, and

  2. a vector bundle \mathbf{V}(\mathcal{F}) \to S is of finite presentation over S if and only if \mathcal{F} is an \mathcal{O}_ S-module of finite presentation.

Having said this, we can use Lemma 32.10.1 to show that the category of vector bundles of finite presentation over S is the colimit over I of the categories of vector bundles over S_ i. \square

Lemma 32.10.3. Let S = \mathop{\mathrm{lim}}\nolimits S_ i be the limit of a directed system of quasi-compact and quasi-separated schemes S_ i with affine transition morphisms. Then

  1. any finite locally free \mathcal{O}_ S-module is the pullback of a finite locally free \mathcal{O}_{S_ i}-module for some i,

  2. any invertible \mathcal{O}_ S-module is the pullback of an invertible \mathcal{O}_{S_ i}-module for some i, and

  3. any finite type quasi-coherent ideal \mathcal{I} \subset \mathcal{O}_ S is of the form \mathcal{I}_ i \cdot \mathcal{O}_ S for some i and some finite type quasi-coherent ideal \mathcal{I}_ i \subset \mathcal{O}_{S_ i}.

Proof. Let \mathcal{E} be a finite locally free \mathcal{O}_ S-module. Since finite locally free modules are of finite presentation we can find an i and an \mathcal{O}_{S_ i}-module \mathcal{E}_ i of finite presentation such that f_ i^*\mathcal{E}_ i \cong \mathcal{E}, see Lemma 32.10.2. After increasing i we may assume \mathcal{E}_ i is a flat \mathcal{O}_{S_ i}-module, see Algebra, Lemma 10.168.1. (Using this lemma is not necessary, but it is convenient.) Then \mathcal{E}_ i is finite locally free by Algebra, Lemma 10.78.2.

If \mathcal{L} is an invertible \mathcal{O}_ S-module, then by the above we can find an i and finite locally free \mathcal{O}_{S_ i}-modules \mathcal{L}_ i and \mathcal{N}_ i pulling back to \mathcal{L} and \mathcal{L}^{\otimes -1}. After possible increasing i we see that the map \mathcal{L} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes -1} \to \mathcal{O}_ X descends to a map \mathcal{L}_ i \otimes _{\mathcal{O}_{S_ i}} \mathcal{N}_ i \to \mathcal{O}_{S_ i}. And after increasing i further, we may assume it is an isomorphism. It follows that \mathcal{L}_ i is an invertible module (Modules, Lemma 17.25.2) and the proof of (2) is complete.

Given \mathcal{I} as in (3) we see that \mathcal{O}_ S \to \mathcal{O}_ S/\mathcal{I} is a map of finitely presented \mathcal{O}_ S-modules. Hence by Lemma 32.10.2 this is the pullback of some map \mathcal{O}_{S_ i} \to \mathcal{F}_ i of finitely presented \mathcal{O}_{S_ i}-modules. After increasing i we may assume this map is surjective (details omitted; hint: use Algebra, Lemma 10.127.5 on affine open cover). Then the kernel of \mathcal{O}_{S_ i} \to \mathcal{F}_ i is a finite type quasi-coherent ideal in \mathcal{O}_{S_ i} whose pullback gives \mathcal{I}. \square

Lemma 32.10.4. With notation and assumptions as in Lemma 32.10.1. Let i \in I. Suppose that \varphi _ i : X_ i \to Y_ i is a morphism of schemes of finite presentation over S_ i and that \mathcal{F}_ i is a quasi-coherent \mathcal{O}_{X_ i}-module of finite presentation. If the pullback of \mathcal{F}_ i to X_ i \times _{S_ i} S is flat over Y_ i \times _{S_ i} S, then there exists an index i' \geq i such that the pullback of \mathcal{F}_ i to X_ i \times _{S_ i} S_{i'} is flat over Y_ i \times _{S_ i} S_{i'}.

Proof. (This lemma is the analogue of Lemma 32.8.7 for modules.) For i' \geq i denote X_{i'} = S_{i'} \times _{S_ i} X_ i, \mathcal{F}_{i'} = (X_{i'} \to X_ i)^*\mathcal{F}_ i and similarly for Y_{i'}. Denote \varphi _{i'} the base change of \varphi _ i to S_{i'}. Also set X = S \times _{S_ i} X_ i, Y =S \times _{S_ i} X_ i, \mathcal{F} = (X \to X_ i)^*\mathcal{F}_ i and \varphi the base change of \varphi _ i to S. Let Y_ i = \bigcup _{j = 1, \ldots , m} V_{j, i} be a finite affine open covering such that each V_{j, i} maps into some affine open of S_ i. For each j = 1, \ldots m let \varphi _ i^{-1}(V_{j, i}) = \bigcup _{k = 1, \ldots , m(j)} U_{k, j, i} be a finite affine open covering. For i' \geq i we denote V_{j, i'} the inverse image of V_{j, i} in Y_{i'} and U_{k, j, i'} the inverse image of U_{k, j, i} in X_{i'}. Similarly we have U_{k, j} \subset X and V_ j \subset Y. Then U_{k, j} = \mathop{\mathrm{lim}}\nolimits _{i' \geq i} U_{k, j, i'} and V_ j = \mathop{\mathrm{lim}}\nolimits _{i' \geq i} V_ j (see Lemma 32.2.2). Since X_{i'} = \bigcup _{k, j} U_{k, j, i'} is a finite open covering it suffices to prove the lemma for each of the morphisms U_{k, j, i} \to V_{j, i} and the sheaf \mathcal{F}_ i|_{U_{k, j, i}}. Hence we see that the lemma reduces to the case that X_ i and Y_ i are affine and map into an affine open of S_ i, i.e., we may also assume that S is affine.

In the affine case we reduce to the following algebra result. Suppose that R = \mathop{\mathrm{colim}}\nolimits _{i \in I} R_ i. For some i \in I suppose given a map A_ i \to B_ i of finitely presented R_ i-algebras. Let N_ i be a finitely presented B_ i-module. Then, if R \otimes _{R_ i} N_ i is flat over R \otimes _{R_ i} A_ i, then for some i' \geq i the module R_{i'} \otimes _{R_ i} N_ i is flat over R_{i'} \otimes _{R_ i} A. This is exactly the result proved in Algebra, Lemma 10.168.1 part (3). \square

Lemma 32.10.5. For a scheme T denote \mathcal{C}_ T the full subcategory of schemes W over T such that W is quasi-compact and quasi-separated and such that the structure morphism W \to T is locally of finite presentation. Let S = \mathop{\mathrm{lim}}\nolimits S_ i be a directed limit of schemes with affine transition morphisms. Then there is an equivalence of categories

\mathop{\mathrm{colim}}\nolimits \mathcal{C}_{S_ i} \longrightarrow \mathcal{C}_ S

given by the base change functors.

Warning: do not use this lemma if you do not understand the difference between this lemma and Lemma 32.10.1.

Proof. Fully faithfulness. Suppose we have i \in I and objects X_ i, Y_ i of \mathcal{C}_{S_ i}. Denote X = X_ i \times _{S_ i} S and Y = Y_ i \times _{S_ i} S. Suppose given a morphism f : X \to Y over S. We can choose a finite affine open covering Y_ i = V_{i, 1} \cup \ldots \cup V_{i, m} such that V_{i, j} \to Y_ i \to S_ i maps into an affine open W_{i, j} of S_ i. Denote Y = V_1 \cup \ldots \cup V_ m the induced affine open covering of Y. Since f : X \to Y is quasi-compact (Schemes, Lemma 26.21.14) after increasing i we may assume that there is a finite open covering X_ i = U_{i, 1} \cup \ldots \cup U_{i, m} by quasi-compact opens such that the inverse image of U_{i, j} in Y is f^{-1}(V_ j), see Lemma 32.4.11. By Lemma 32.10.1 applied to f|_{f^{-1}(V_ j)} over W_ j we may assume, after increasing i, that there is a morphism f_{i, j} : V_{i, j} \to U_{i, j} over S whose base change to S is f|_{f^{-1}(V_ j)}. Increasing i more we may assume f_{i, j} and f_{i, j'} agree on the quasi-compact open U_{i, j} \cap U_{i, j'}. Then we can glue these morphisms to get the desired morphism f_ i : X_ i \to Y_ i. This morphism is unique (up to increasing i) because this is true for the morphisms f_{i, j}.

To show that the functor is essentially surjective we argue in exactly the same way. Namely, suppose that X is an object of \mathcal{C}_ S. Pick i \in I. We can choose a finite affine open covering X = U_1 \cup \ldots \cup U_ m such that U_ j \to X \to S \to S_ i factors through an affine open W_{i, j} \subset S_ i. Set W_ j = W_{i, j} \times _{S_ i} S. This is an affine open of S. By Lemma 32.10.1, after increasing i, we may assume there exist U_{i, j} \to W_{i, j} of finite presentation whose base change to W_ j is U_ j. After increasing i we may assume there exist quasi-compact opens U_{i, j, j'} \subset U_{i, j} whose base changes to S are equal to U_ j \cap U_{j'}. Claim: after increasing i we may assume the image of the morphism U_{i, j, j'} \to U_{i, j} \to W_{i, j} ends up in W_{i, j} \cap W_{i, j'}. Namely, because the complement of W_{i, j} \cap W_{i, j'} is closed in the affine scheme W_{i, j} it is affine. Since U_ j \cap U_{j'} = \mathop{\mathrm{lim}}\nolimits U_{i, j, j'} does map into W_{i, j} \cap W_{i, j'} we can apply Lemma 32.4.9 to get the claim. Thus we can view both

U_{i, j, j'} \quad \text{and}\quad U_{i, j', j}

as schemes over W_{i, j'} whose base changes to W_{j'} recover U_ j \cap U_{j'}. Hence after increasing i, using Lemma 32.10.1, we may assume there are isomorphisms U_{i, j, j'} \to U_{i, j', j} over W_{i, j'} and hence over S_ i. Increasing i further (details omitted) we may assume these isomorphisms satisfy the cocycle condition mentioned in Schemes, Section 26.14. Applying Schemes, Lemma 26.14.1 we obtain an object X_ i of \mathcal{C}_{S_ i} whose base change to S is isomorphic to X; we omit some of the verifications. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.